Calculus KCATM 2014

Suppose f(x) is a continuous, twice-differentiable function. Values of x, f(x) & f'(x) are provided in the table below. You will use this table to answer questions 1-5.

x	0	1	2	3	5
f(x)	1	3	5	7	2
f'(x)	-5	1	-7	-2	3

1) What is the average rate of change of f(x) over the interval [0, 5]?

A) 0 B) 1/5 C) 3 D) 5 E) 10

- 2) Write the equation of the line tangent to f(x) at x = 2.
 - A) y = 5x 17B) y = 5x - 3C) y = -7x - 9E) y = -7x + 19

3) Evaluate
$$\frac{d}{dx}(f(x))^2$$
 at $x = 3$.
A) -28 B) -14 C) 14
D) 28 E) 49

4) Use a trapezoidal sum with four subintervals to estimate $\int_0^5 f(x) dx$.

- A) 0 B) 7 C) 14
- D) 21 E) 28

5) Evaluate
$$\int_{0}^{5} f'(x) dx$$
.
A) 1 B) 2 C) 3

D) 5 E) 7

Name	
Gr	

For questions 6-9, suppose $f(x) = \frac{x-2}{x^2-4}$.

6) Compute $\lim_{x\to 2} f(x)$. A) 0 D) 1 B) 1/4 C) 1/2 E) The limit does not exist.

7) Compute f'(4).

 A) -4
 B) -1/2
 C) -1/36

 D) 1/36
 E) 1/2

8) Compute
$$\int_{5}^{7} f(x) dx$$
.
A) $\ln\left(\frac{5}{3}\right)$
D) $\ln\left(\frac{11}{9}\right)$
B) $\ln\left(\frac{7}{5}\right)$
E) $\ln\left(\frac{13}{11}\right)$

9) Compute
$$\lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$
.
A) -1
D) 1/25
B) -1/49
C) -1/25
E) 1/49

10) Compute
$$\int x\sqrt{25+x} \, dx$$
.

A)
$$x^{2}(25+x)^{1/2} + C$$

B) $\frac{x^{2}}{3}(25+x)^{3/2} + C$
C) $\frac{1}{2\sqrt{x^{2}+25x}} + C$
D) $\frac{2}{5}(x+25)^{5/2} - \frac{50}{3}(x+25)^{3/2} + C$
E) $\frac{2}{3}(x+25)^{3/2} - 50(x+25)^{1/2} + C$

11) Compute $\int x\sqrt{25+x^2} \, dx$.

A)
$$\frac{1}{3}(25+x^2)^{3/2} + C$$

B) $\frac{2}{3}(25+x^2)^{3/2} + C$
C) $\frac{4}{3}(25+x^2)^{1/2} + C$
D) $\frac{1}{4\sqrt{25+x^2}} + C$
E) $\frac{1}{2\sqrt{25+x^2}} + C$

12) Which of the following integrals is equivalent to $\int \sqrt{25 - x^2} dx$ if the substitution $x = 5\sin\theta$ is used?

- A) $\int 5\cos\theta d\theta$
- B) $\int 5\sin\theta d\theta$
- C) $\int 25\sin^2\theta \,d\theta$
- D) $\int 25\cos^2\theta \,d\theta$
- E) $\int \cos^2 \theta \, d\theta$

13) Compute
$$\frac{d}{dx} \int_{0}^{x} \sqrt{25 - t^{2}} dt$$
.
A) $\sqrt{25 - x^{2}}$
B) 0
C) $\frac{-x}{\sqrt{25 - x^{2}}}$
D) $\frac{x}{\sqrt{25 - x^{2}}}$
E) $\frac{2}{3} (25 - x^{2})^{3/2}$

14) Compute
$$\frac{d}{dx}e^{\tan x}$$
.
A) $e^{\tan x}$
B) $e^{\tan x}\csc^2 x$
C) $e^{\tan x}\sec^2 x$
D) $-e^{\tan x}\sec^2 x$
E) $-e^{\tan x}\csc^2 x$

15) Compute
$$\int \frac{1}{x^2 - 4} dx$$
.
A) $\frac{1}{4} \ln (x^2 - 4) + C$
B) $\frac{1}{4} \ln |x^2 - 4| + C$
C) $\frac{1}{4} \ln \left(\frac{x - 2}{x + 2} \right) + C$
D) $\frac{1}{4} \ln \left| \frac{x - 2}{x + 2} \right| + C$
E) $\frac{1}{4} \ln \left| \frac{x + 2}{x - 2} \right| + C$

For questions 16-19, suppose f(2) = 5.

16) Which of the following statements is/are true if f'(2) = 4?

I)	The equation of the line tangent to $f(x)$ at $x = 2$ is $y = 4x - 3$.		
II)	f(x) is differentiable at $x = 2$. f(x) is continuous at $x = 2$.		
III)			
A) I only	B) II only		

C) III only

D) I and III only E) I, II, and III

17) Which of the following statements is/are true if $\lim_{x\to 2^-} f(x) = 3 \& \lim_{x\to 2^+} f(x) = 5$?

- A) f(x) is continuous at x = 2.
- B) f(x) is differentiable at x = 2.
- C) f(x) has a jump discontinuity at x = 2.
- D) f(x) has a removable discontinuity at x = 2.
- E) f(x) has an oscillating discontinuity at x = 2.
- 18) Which of the following statements is/are true if $\lim f(x) = 6$?
 - A) f(x) is continuous at x = 2.
 - B) f(x) is differentiable at x = 2.
 - C) f(x) has a jump discontinuity at x = 2.
 - D) f(x) has a removable discontinuity at x = 2.
 - E) f(x) has an oscillating discontinuity at x = 2.
- 19) Which of the following statements is/are true if $\lim_{x \to 2} f(x) = 5$?
 - A) f(x) is continuous at x = 2.
 - B) f(x) is differentiable at x = 2.
 - C) f(x) has a jump discontinuity at x = 2.
 - D) f(x) has a removable discontinuity at x = 2.
 - E) f(x) has an oscillating discontinuity at x = 2.

- 20) Find the area of the region between by the curves $f(x) = \sqrt{x} \& g(x) = x^2$.
 - A) 1/27 B) 1/15 C) 1/9
 - D) 1/6 E) 1/3

21) Find the volume of the solid created when $f(x) = \sqrt{x}, 0 \le x \le 4$, is rotated about the *x*-axis.

- A) π B) 2π C) 4π D) 8π E) 16π
- 22) Evaluate $\int_0^\infty x e^{-x^2} dx$. A) 1/4 B) 1/2 C) 1 C) 2 E) 4

23) Solve the initial value problem:
$$\frac{dy}{dx} = xy; y(0) = 3.$$

A) $y = e^{x^2/2} + C$
B) $y = -e^{x^2/2} + C$
C) $y = -3e^{x^2/2} + C$
D) $y = 3e^{x^2/2} + C$
E) $y = 3e^{x/2} + C$

- 24) Find the slope of the line tangent to $(x + y)^2 = 3x$ at the point (3, 0).
 - A) -1 B) -1/2 C) 0
 - D) 1/2 E) 1

For questions 25-28, suppose the velocity of a particle moving along a horizontal number line at time *t*, is given by the equation $v(t) = \cos(e^t) + 2$, for $t \ge 0$.

25) Find the acceleration of the particle at t = 1.

A) -1.117	B) -0.617	C) -0.117
D) 0.383	E) 0.883	

26) Find the average velocity of the particle over the interval [0, 2].

A) 0.386	B) 0.886	C) 1.386
D) 1.886	E) 2.386	

- 27) Find the average acceleration of the particle over the interval [0, 2].
 - A) -2.046
 B) -1.546
 C) -1.046

 D) -0.546
 E) -0.046
- 28) Suppose s(t) represents the position of the particle at time *t*. If s(0) = 3, find s(2).

A) 3.772	B) 4.772	C) 5.772

D) 6.772 E) 7.772

- 1. B
- 2. E
- 3. A
- 4. D
- 5. A
 6. B
- 7. C
- 8. C
- 9. C
- 10. D
- 11. A
- 12. D
- 13. A
- 14. C
- 15. D
- 16. E
- 17. C
- 18. D
- 19. A
- 20. E
- 21. D
- 22. B23. D
- 23. D 24. B
- 24. D 25. A
- 26. D
- 20. D 27. E
- 28. D