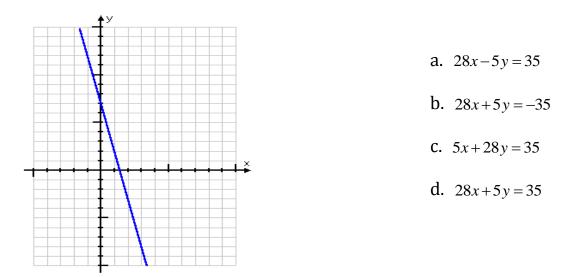
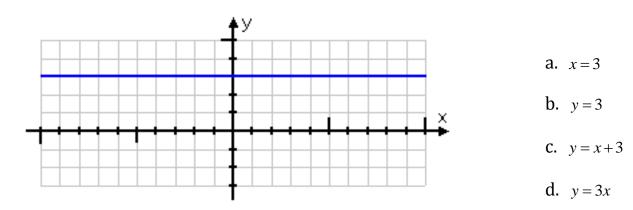
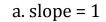

Gr _____

1. Choose the equation that best fits the graph provided:


- 2. Give the slope of the line pictured in #1:
 - a. 2 b. 3 c. -2 d. -3
- 3. Choose the best equation for the graph below:

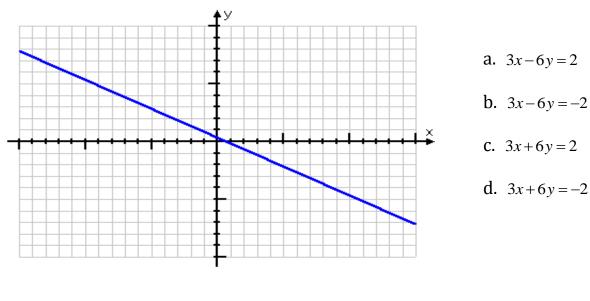

4. Which slope best describes the line in #3?

a. -16/9 b. 9/16 c. -9/16 d. 16/9


5. Choose the best equation for the graph below:

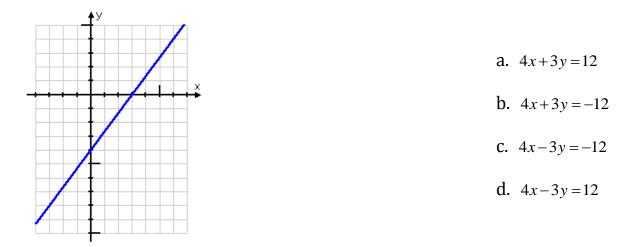
- 6. The Y intercept of the line above is:
 - a. 7 b. -7 c. 1.25
- 7. Choose the best equation for the line graph below:

8. Find the slope of the line in #7:



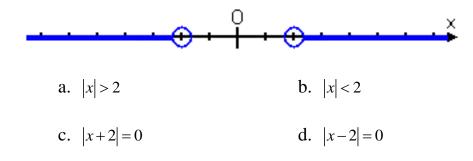
b. undefined slope

c. zero slope

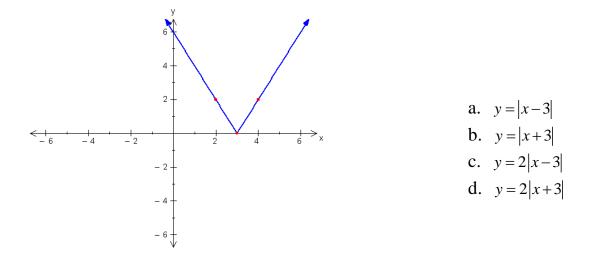

9. What is the X intercept of the line above:

10. Choose the best equation for the graph below:

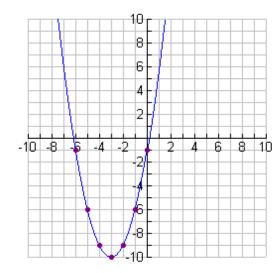
- 11. The slope of the line above is:
 - a. 1/2 b. -1/2 c. 2 d. -2


12. Choose the best equation for the line below:

13. If a line was drawn on the graph above through the point (0,0) with a slope of – $\frac{3}{4}$, how would the graph be related to the original graph shown?


- a. It would be parallel to the line above.
- b. It would intersect the line above in the first quadrant
- c. It would be perpendicular to the line above.

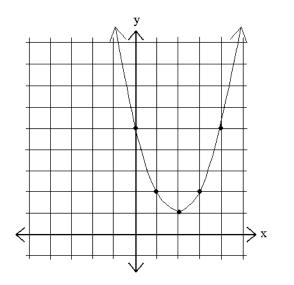
14. Choose the best inequality for the graph below:



- 15. Describe the graph on question 14 using interval notation:
 - a. $(-\infty, -2] \cup [2, \infty)$ b. $[-\infty, -2] \cup [2, \infty]$ c. $(-\infty, -2) \cap (2, \infty)$ d. $(-\infty, -2) \cup (2, \infty)$

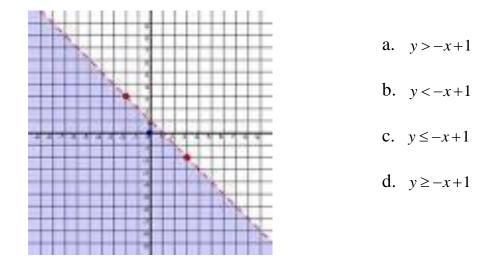
16. Choose the best equation for the graph below:

17. Choose the best equation for the graph below:

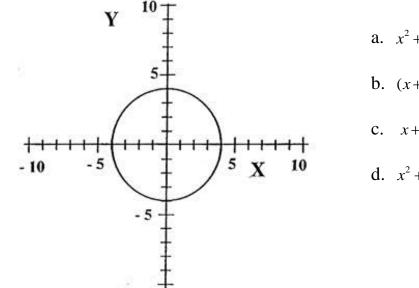


- a. $y = x^2 + 6x 1$
- b. $y = x^2 + 6x + 1$
- c. $y = x^2 6x + 1$
- d. $y = x^2 6x 1$

18. Find the two zeros of the parabola above to the thousandth place:


a 6.213, 0.213	b 6.162, 0.162
c 6.339, 0.339	d. – 6.401, 0.401

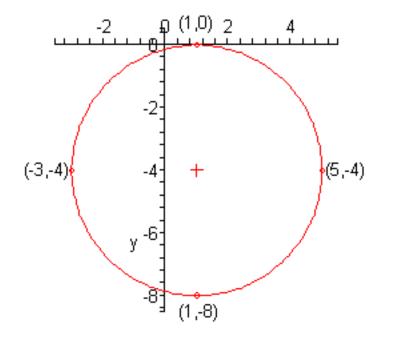
19. Find the best equation for the parabola below:



- a. $y = (x+2)^2 + 1$
- b. $y = (x+2)^2 1$
- c. $y = (x-2)^2 1$
- d. $y = (x-2)^2 + 1$

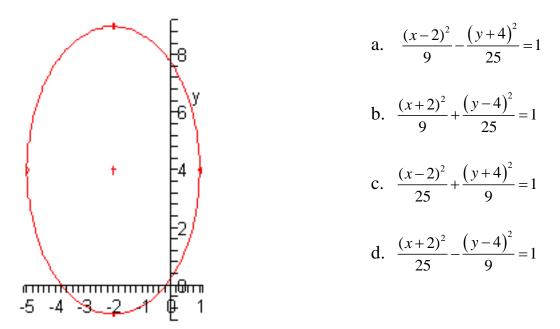
20. Choose the best inequality to describe the graph below:

21. Choose the best equation for the graph below:

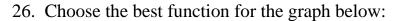


a. $x^{2} + y^{2} = 5$ b. $(x+5)^{2} + (y+5)^{2} = 1$ c. x + y = 25d. $x^{2} + y^{2} = 25$

22. Find the center of the following circle: $x^2 + y^2 - 3x + 10y - 1 = 0$


- a. center = (3/2, 5) b. center = (-3/2, -5)
- c. center = (3/2, -5) d. center = (-3/2, 5)

23. Choose the equation that best fits the graph below:


a. $(x-1)^{2} + (y+4)^{2} = 4$ b. $(x+1)^{2} + (y-4)^{2} = 4$ c. $(x-1)^{2} + (y+4)^{2} = 16$ d. $(x+1)^{2} + (y-4)^{2} = 16$

24. Choose the best equation for the ellipse below:

25. Which of the equations in question 24 is a hyperbola with the center at (-2, 4)?

[Same choices as #24]

For questions 28-30, consider a sinusoid with a maximum at the point (2, 5) and a minimum at the point (4, -9).

- 28. What is the amplitude of the sinusoid?
 - A) 2 B) 4 C) 7 D) 14
- 29. What is the period of the sinusoid?
 - A) 2 B) 4 C) 6 D) 8
- 30. What is the vertical translation of the sinusoid?
 - A) -9 B) -2 C) 2 D) 5

For questions 31-34, consider a rational function of the form $y = \frac{ax+b}{cx+d}$. (Assume that a, b, c, d are all non-zero.)

31. Suppose c = 2, and the rational function has a horizontal asymptote at y = 7. Calculate the value of a.

A) 7/2 B) 7 C) 9 D) 14

32. Suppose c = 2, and the rational function has a vertical asymptote at x = 5. Calculate the value of d.

A) -10 B) -5 C) 5 D) 10

33. Find the x-intercept.

A) b/a B) -b/a C) d/c D) -d/c

34. Find the y-intercept.

A) a/c B) b/d C) a/d D) b/c

35. Which of the following statements correctly describes a difference between $f(x) = \frac{x^2 + 3x}{x}$ and g(x) = x + 3?

- A) They are the same graph. There is no difference.
- B) f(x) is a parabola, whereas g(x) is a line.
- C) Both graph as lines, but f(x) has a hole at the point (0, 0).
- D) Both graph as lines, but f(x) has a hole at the point (0, 3).

36. Which of the following statements correctly describes the function $f(x) = \csc(2x)$?

- A) f(x) has vertical asymptotes every 2 units
- B) f(x) has a period of π
- C) f(x) has infinitely many x-intercepts
- D) All of the above statements are true.

37. Which of the following functions has a horizontal asymptote at y = 1?

A)
$$f(x) = e^{x+1}$$
 B) $f(x) = \frac{1-x}{x+5}$ C) $f(x) = \frac{1}{1+e^{-x}}$ D) $f(x) = \tan^{-1} x$

38. Which of the following functions has the same end behavior on its left and right?

A)
$$f(x) = e^{x+1}$$
 B) $f(x) = \frac{1-x}{x+5}$ C) $f(x) = \frac{1}{1+e^{-x}}$ D) $f(x) = \tan^{-1} x$

39. Which of the following functions is increasing over the interval $(-\infty,\infty)$?

A)
$$f(x) = \sqrt{x}$$
 B) $f(x) = x^2$ C) $f(x) = \frac{1}{x}$ D) $f(x) = \sqrt[7]{x-1}$

40. Suppose $f(x) = x^2$ and $g(x) = \sqrt{x+4}$. Find the domain of g(f(x)).

- A) $(-\infty,\infty)$ B) $[-4,\infty)$ C) $(-4,\infty)$ D) $[4,\infty)$
- 41. Suppose $f(x) = x^2$ and $g(x) = \sqrt{x+4}$. Find the domain of f(g(x)).
 - A) $(-\infty,\infty)$ B) $[-4,\infty)$ C) $(-4,\infty)$ D) $[4,\infty)$

Match the following polar curves to their descriptions.

 42. _____ Circle
 A) $r = sin(4\theta)$

 43. _____ Limacon
 B) $r = 2 + 2cos(2\theta)$

 44. _____ Rose Petal
 C) r = 1

 45. _____ Spiral
 D) $r = \theta$