KCATM 2013 Algebra: 9^{th} and 10^{th}

Name _____

 The equation (x + y) + z = x + (y + z) is an example of the Property of Addition. 			
A. Associative	B. Commutative	C. Distributive	D. Identity
2. An expression that implements the Distributive Property when simplifying is:			
A. 3(a · 2)	B. 3(a + 2)	C. $3\left(\frac{a}{2}\right)$	D. 3(<i>a</i>) ²
3. $0.3(4.5x - 6) = -1.4(3x - 5)$			
A3.85	В. −0.25	C. 0.02	D. 1.59
4. $ 2x - 5 = x + 5$			
A. $-\frac{10}{3}$	B. $\frac{10}{3}$	C. 10	D. 0,10
5. If $y = 2x + 5$ and $y = -2x - 3$, then $x + y = $			
A3	В. —2	C. −1	D. 1
6. The solution to $ x \le 2x + 6$ is			
A. $x \le -6$	B. $x \le 6$	C. $-6 \le x \le 6$	D. $x \le -6$ or $x \ge 6$
7. If $x - \frac{1}{2} = \frac{2x}{5}$, then the solution is			
A. $\frac{6}{5}$	B. $\frac{5}{6}$	C. $-\frac{5}{6}$	D. $-\frac{6}{5}$

8. What is the sum of the a and b values for the solution to the system?

$$2a - b = -5$$

$$b = -2a$$

A. Not Possible B. $-\frac{5}{4}$ C. $\frac{5}{4}$ D. $\frac{5}{2}$
9. What is the value of $(x + 3)^2 + x^2$ when $x = -3$

A. 81 B. 9 C. 0 D. -9

10. Solve for F: $C = \frac{5}{9}(F - t)$ A. F = 9C - t B. F = 9C + t C. $F = \frac{9}{5}C + \frac{1}{5}t$ D. $F = \frac{9}{5}C + t$

- 11. What is the larger solution of $3x^2 5x 2 = 0$? A. $-\frac{2}{3}$ B. $\frac{1}{3}$ C. 1 D. 2
- 12. Evaluate the following if x = -2; $-x + 2x^2 3x^3 + 4x^4$
- A. -46 B. -30 C. 82 D. 98

13. What is the sum of the solutions of this equation?

$$(x+1)^2 - 5(x+1) + 6 = 0$$

A. -3 B. 3 C. -5 D. 5

14. Simplify, using only positive exponents.

$$\left[\frac{7c^{-2}}{(7c)^2}\right]^{-1}$$
A. $\frac{1}{7}$ B. 7 C. $7c^4$ D. $\frac{1}{7c^4}$ E. $\frac{1}{343c^4}$

15. Solve:

$$\frac{8(x-1)}{x^2-4} = \frac{4}{x-2}$$

A. 1 B. 2, 4 C. $\frac{9}{4}$ D. 4

16. Given $a\Delta b = 2a - b$, what is the value of, $2\Delta \pi$?

A. $2 - \pi$ B. $2\pi - 2$ C. $4 - \pi$ D. $\pi - 4$

17. If the original price of an item is \$50 is decreased by 20% and then additional 10%, what is the final price of the item?

A. 30 B. 35 C. 36 D. 45

18. Solve. When $K = \frac{n(n-3)}{2}$ and $P = n^2 + n$ find the sum of P and K when n = -7.

A. -28 B. -21 C. 60 D. 77

19. Tickets for the school play cost \$5 for adults and \$3 for students. On opening night, 150 tickets were sold and \$560 was collected. How much was collected from the sale of student tickets?

A. \$55 B. \$95 C. \$275 D. \$285

20. For the functions g(x) listed below, suppose x is an integer greater than 1, and k is a constant greater than 1. If $f(x) = x^2$ which of the following functions has the greatest value for f(g(x))?

A. $g(x) = \frac{x}{k}$ B. $g(x) = \frac{k}{x}$ C. g(x) = kx D. g(x) = x - k

21. Find the distance between $(3\sqrt{3}, -1)$ and $(6\sqrt{3}, -2)$.

A. 6 $B.2\sqrt{7}$ C. 36 $D.3\sqrt{3}+1$

22. Perform the operation and express as one fraction:

A.
$$\frac{2}{2a+1}$$
 B. $\frac{a+1}{a}$ C. $\frac{a^2+a}{2a+1}$ D. $\frac{2a+1}{a^2+a}$

23. If $2 + 3(3\sqrt{x} + 4) = 23$, then the $\sqrt{x} = ?$ A. -1 B. 1 C. 9 D. 12 24. A runner of 100 miles endurance race ran at a speed of five miles per hour for the first eighty miles of the race and x miles per hour the last 20 miles of the race. What equation represents the runner's average speed for the entire race?

A.
$$\frac{100}{\left[\left(\frac{80}{5}\right) + \left(\frac{20}{x}\right)\right]}$$
 B. $100\left[\left(\frac{80}{5}\right) + \left(\frac{20}{x}\right)\right]$ C. $\frac{100}{\left[(80\cdot5) + (20x)\right]}$ D. $\frac{\left[\left(\frac{80}{5}\right) + \left(\frac{20}{x}\right)\right]}{100}$

25. What term is next in the following sequence?

$$25, -5, 1, -\frac{1}{5} \dots$$

A. -1 B. $-\frac{1}{25}$ C. $\frac{1}{25}$ D. 1

26. Find the value $\log_2 8$.

A. 2⁸ B. 8² C. 2 · 8 D. 3

27. For the following equation, *i* represents an imaginary number. Simplify the following equations (2 - 2i) - (4 - 3i).

A. 2-5i B. 2-14i C. -2+i D. -6-5i E. 8+6i

28. Consider the imaginary number j where $j^2 = -5$. What does, $j + j^2 + j^3 + j^4 = ?$

A. -25 B. 25 C. -4j - 20 D. -4j + 20

29. $13^3 \cdot 13^5 =$

A. 13⁸ B. 13¹⁵ C. 169⁸ D. 169¹⁵